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This paper addresses the fundamental question of how to position a heat-generating board 
inside a parallel-plate channel, where it is cooled by forced convection. It is shown that 
when the board substrate is a relatively good thermal conductor, the best board position 
is near one of the channel walls, and the worst position is in the middle of the channel. 
The best and worst positions switch places when the board substrate is a relatively poor 
conductor. The optimal spacing between a heat-generating surface (uniform temperature, 
or uniform heat flux) and the insulated wall that completes a parallel-plate channel is 
reported. Finally, it is shown under what conditions it is advantageous to divide a 
heat-generating board into two or more equidistant boards inside the same channel, when 
the total rate of heat generation of all the boards and the channel spacing are fixed. 
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1. Introduction 

The objective of this paper is to address the fundamental 
thermal design problem of how to position a heat-generating 
board inside a parallel-plate channel with forced convection 
cooling, so that the board temperature is minimum. This 
question will be answered in a sequence of steps that begins 
with the simplest: (1) what is the optimal position of a highly 
conducting board inside a parallel-plate channel (section 2), (2) 
what is the optimal position of a board with finite transversal 
thermal conductance (section 3), (3) what is the optimal spacing 
of a channel with the heated plate attached to one of its walls 
(sections 4 and 5), and (4) under what circumstances should the 
single board be replaced with two or more equidistant boards 
that generate the same (total) rate of Joule heating (section 6). 

The fundamental thermal design questions formulated in this 
paper were motivated by a real problem encountered in the 
electronics industry. In certain types of electronic packages, the 
single-phase coolant flows through a set of two-dimensional 
(2-D) parallel channels formed by a row of printed circuit 
boards plugged into a mother board. Each board may be 
surrounded by a metal or metal-coated plastic case whose 
function is to shield the electronic circuitry from external 
electromagnetic noise. It is important to know the optimal 
geometry of each "cassette" (i.e., the board and its parallel-plate 
casing) so that the board operating temperature is minimum. 
To optimize the geometry of the cassette means to find not 
only the optimal position for the board inside the channel, but 
also the optimal slenderness of the cassette itself (i.e., the 
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spacing of the channel in which the heat-generating board is 
encased). 

Recent review articles (Incropera 1988; Peterson and Ortega 
1990) show that the problems solved in this paper have not 
been addressed in the electronic cooling literature. On the other 
hand, the fundamentals of heat and fluid flow through multiple 
channels have received considerable attention in the heat- 
exchanger literature (Rohsenow et al. 1985; Shah and London 
1978). 

2. The optimal position of a heated plate inside 
a parallel-plate channel 

Consider first the challenge of cooling in the most effective way 
a heated plate of length L, by positioning it in a stream of 
coolant that flows through an insulated parallel-plate channel 
of the same length. The channel spacing D is fixed. The 
geometry sketched in Figure 1 is 2-D, since the blade and the 
channel are sufficiently wide (width = W) in the direction 
perpendicular to the figure, W > L. 

We assume that the pressure difference across the channel, 
AP, is fixed because the flow is driven by a fan with diameter 
considerably greater than the channel spacing D. In an actual 
application, the fan would blow air through a stack of ten or 
more cassettes of profile L x D: only one such cassette is 
presented in Figure 1. 

The heated plate is a simplified model for a printed circuit 
board, or a blade-shaped electric resistance heater. The total 
rate of heat transfer q from the heated plate to the fluid, through 
both sides of the plate, is fixed by the electric circuit design. 
The plate thickness is negligible with respect to the channel 
spacing D. The only degree of freedom in choosing the best 
cooling arrangement is the position of the heated plate inside 
the channel. This position is pinpointed by the subchannel 
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Figure 1 Heated plate cooled by a stream ducted through an 
insulated parallel-plate channel 

spacings above and below the heated plate, D 1 and D2, such 
that D1 + D2 = D. 

To illustrate the solution method in the simplest possible 
way, in this section we make the following assumptions: 

(a) the heated plate is isothermal at T,,; 
(b) the flow is fully developed and laminar on both sides of the 

plate; 
(c) the NTU on either side of the plate is sufficiently greater 

than 1 so that (To=.L2 -- TO)/(Tw - To) -~ 1; and 
(d) the surfaces of the plate and the channel walls are smooth. 

As shown in Figure 1, T,=a and T,=, 2 are the outlet bulk 
temperatures, above and below the heated plate. The objective 
is to determine the best configuration (Dt/D) so that the thermal 
conductance q/(Tw - To) is the greatest. 

If we label ql and q2 the heat transfer rates through the upper 
side and the lower side of the heated plate, respectively, then 
the approximation (c) above permits us to write 

q l  --- l~l C~Tw -- To) (1) 

q2 = rh2 cdTw - To) (2) 

where, for fully developed laminar flow (Incropera 1988), 

Fat p W  AP 
= 12/z -L-  D~ (3) 

612 pW AP 
= 12/~ ~ D23 (4) 
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Next, we write y and (1 - y) for the dimensionless spacings of 
the upper and lower subehannels, 

DI --- yD, D 2 -- (1 - y)D (5) 

and calculate the total heat transfer rate q = qt + q2, by using 
Equations 1 to 4. The result is 

q 12#L = y3 + (1 - y)3 (6) 
Tw - To p Cp WD 3 AP 

Figure 2 shows that the highest value of the y function on 
the right-hand side is 1, and that it occurs when y = 0, or y = 1. 
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Figure 2 The effect of the position of the heated plate on the 
overall thermal conductance: - -  laminar, fully developed; 
. . . .  turbulent, fully rough, fully developed 

N o t a t i o n  

a,b 
Aw 
B 

Cp 

D 
Dh 
h 
k 
k~ 
L 
rh 
n 

NTU 
Nu 
P 
q 
q- 

t 

to= 
T. 
To 

Parameters, Equation 19 
Heat transfer area, L x W 
Dimensionless board transversal thermal conduc- 
tance, Equation 17 
Specific heat at constant pressure 
Channel spacing 
Hydraulic diameter, 2D 
Heat transfer coefficient 
Thermal conductivity of fluid 
Thermal conductivity of board 
Length 
Mass flowrate 
Number of boards, Figure 8 
Number of heat transfer units, Equation 23 
Nussclt number, hD~/k 
Parameter, Equation 19 
Total heat transfer rate 
Uniform heat flux 
Average heat flux 
Board thickness 
Highest temperature, Figure 4 
Stream outlet temperature 
Uniform temperature 
Stream inlet temperature 

U Mean velocity 
W Width, perpendicular to Figures 1, 3, and 4 
y Dimensionless location of inserted plate, Equation 5 
Y,m Worst location, Figure 4 
Ymin Best location, Figure 4 

Greek symbols 

Thermal diffusivity 
6 Dimensionless spacing, Equation 12 
AP Pressure difference 
01. 2 Dimensionless trailing-edge temperatures, 

Equation 14 
0.n,x Uppermost temperature ceiling, Figure 5 
0mr, Lowest temperature ceiling, Figure 5 
/z Viscosity 
v Kinematic viscosity 
H Dimensionless pressure difference, Equation 24 
p Fluid density 

Subscripts 

h Highest temperature 
m=x Maximum 
opt Optimal 
1 The upper subchannel, Figure 1 
2 The lower subchannel, Figure 1 
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The minimum value (-1,) occurs when y = ½. We reach the 
somewhat unexpected conclusion that, from a cooling stand- 
point, the centerplane (y = ½) is the worst position that the 
heated plate can have. The best arrangement is the one where 
the plate is attached to one of the insulated walls of the channel, 
even though in that case the entire heat transfer rate q must 
leave the plate through only one of its side surfaces. When the 
blade is attached to one of the walls, the thermal conductance 
q/(Tw - To) is four times greater than when the blade is posi- 
tioned in the center of the channel. 

The conclusion that the worst cooling position is y = ½ 
remains valid even when some of the simplifying assumptions 
(a)--(d) are relaxed. For example, let us discard assumptions (b) 
and (d) together, and assume instead that the flow is turbulent 
fully developed, and the board surfaces are very rough. This is 
a good model for cassettes with L/D ratios much greater than 
10, so that the entrance region is relatively small, and with 
boards densely covered with chips and circuitry that rise as 
large scale three-dimensional (3-D) asperities above the surface. 
Under these circumstances (i.e., the "fully rough" limit of 
turbulent duct flow), the friction factor is practically inde- 
pendent of the Reynolds number (Incropera and DeWitt 1990), 
and Equations 3 and 4 are replaced by 

= (P  Ap~ I/2wD31/2 
rh~ \ AL  / (7) 

= (p  (8) 
\ f 2 L /  

The friction factor constantsf~ and f2 depend on the dimen- 
sions of the roughness elements (assumed the same for both 
board surfaces) and on the respective subchannel spacings 
(D~, D2). When the board is placed "in the stream," i.e., at y 
values comparable with ], the spacings D t and D 2 are also 
comparable and, as a first approximation, fl  and f2 may be 
taken as equal to the same constant f. This is a conservative 
approximation to which we shall return in the paragraph after 
next. In the end, Equation 6 is replaced by 

(9) 
T,, T o \ p  A P /  cpWD 3/2 

This result shows that the overall thermal conductance 
q/(T w - To) is once again minimum if the board is placed in the 
middle of the channel. The right-hand side of Equation 9 is 
plotted as a dash curve in Figure 2, and is valid in the vicinity 
of y = ½. The thermal conductance minimum is not as sharp 
as for the fully developed laminar flow, suggesting that the 
optimal positioning of the board is not as critical in the fully 
rough limit. 

If one is to repeat the analysis and take into account the 
difference between fl  and f2 as the board is positioned close to 
one of the walls, one would obtain a curve that falls under the 
dash curve in Figure 2. The reason is that in the fully rough 
regime, the friction factor decreases weakly as the channel 
spacing increases (see, for example, Bejan 1984). This weak 
dependence acts in the direction of increasing (slightly) the -~ 
exponent that appears in Equations 7 to 9. The new curve 
would fall under the dash curve (exponent = ]) and above the 
solid curve (exponent = 3; see Equation 6). 

3. Heat-generating board with finite thermal 
conductance in the transversal direction 

The conclusion reached in the preceding section and in Figure 
2 (namely, Yopt = 0,1) is valid when the board thermal con- 

ductivity is so high that the temperature Tw can be regarded 
as uniform. Only such a board is capable of releasing its entire 
rate of heat generation to a single subchannel (Dr = D, or 
D 2 = D) when the board is positioned near one of the walls. 

Consider now the more realistic model in which the board 
of Figure 1 (the substrate of an electronic circuit board) has a 
finite thermal conductivity kw and thickness t. The thickness 
continues to be negligible with respect to D. The two surfaces 
of the board are loaded equally and uniformly with electronics: 
the constant heat generation rate per unit board surface is q". 
It is important to note, however, that the heat fuxes removed 
by the two streams generally are not equal, because of the 
conduction heat transfer across the board. 

The temperatures of the two board surfaces (7"1, T2) increase 
in the downstream direction, and reach their highest levels at 
the trailing edge, x = L. The objective is to minimize the larger 
of these two trailing-edge temperatures, by choosing the opti- 
mal board position y. 

We obtain the temperature distributions Tl(x ) and T2(x ) by 
making the simplifying assumption that the temperature in- 
crease along each surface (for example, TI(L ) - 7"1(0)) is con- 
siderably greater than the local temperature difference between 
the surface and the corresponding stream. This assumption 
becomes better as the D x L channel becomes more slender. It 
means that the local temperature of each stream (1/* 1, rh2) is 
fairly close to the temperature of the neighboring spot on the 
board surface bathed by the stream. Note that this assumption 
is the equivalent of assumption (c) in the preceding section. 
Based on it, we can write the first law for a dx slice of the Dt 
and D2 subchannels in the following way: 

rhlcp dT  t = q'~W dx (10) 

~fl2c P dT  2 = q'~W dx (11) 

The mass flowrates rht and m2 are given by Equations 3 and 
4, as each subchannel stream is assumed laminar and fully 
developed. Although the heat flux generated by the electronics 
mounted on each surface of the board is uniform, q", the heat 
fluxes removed by the two streams are influenced by the 
conduction heat current across the board (kw/tXT 2 - Tt), 

kw 
q~ = q" + - -  (T 2 - T1) (12) 

t 

q; = q" ---kw (T 2 - 7"1) (13) 
t 

In Equations 3 and 4 and 10-13 we have all we need for 
determining the surface temperatures Tl(x) and T2(x) subject 
to the entrance condition Tx(0 ) = T2(0 ) = T o. This operation 
becomes clearer if we use the dimensionless variables DI/D = y, 

D2/D = 1 - y, ~ = x / L ,  and 

pcp APD 3 pcp APD 3 
O~ = (T~ - To) 12/~LZq,~, 02 = (T2 - To) 12#L2q,, (14) 

The problem reduces to integrating for 01( 0 and 02(0 the two 
equations 

y3 dO~1= l + B(O 2 - 0 1 )  
d~ 

d02 = 1 - B(02 - 01) (1 - y)3 d-¢ 

(15) 

(16) 

by starting from the inlet, where 0t(0 ) = 02(0 ) = 0. The di- 
mensionless group B accounts for the transversal thermal 
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conductance of the board, 

kw #aL e 
B = 12 k+ A P . D S t  (17) 

The solution for the temperature of the board surface facing 
the D2 subchannel is 

02(+)--- ( ; -  ~ ) [ . I -  exp( -pO]  + b + (18) 
P 

with the shorthand notation 

B [  1 1 1 ,  1 b =  2B (19) 
p = ~ + ~-~ a - (1 - y)~' (1 - y)ay--a 

The highest temperature occurs at the trailing edge, Oh,2 = 
02(1), namely, 

0he ---- - rl -- exp(-p)]  + - (20) 
P 

This temperature is a function of the board position y and the 
board conductance parameter B, as shown by the solid curves 
in Figure 3. The highest temperature of the board surface facing 
the D t subchannel, 0h. t = 0t(1), is obtained by switching y and 
(1 - y) in the Oh., solution (20). The resulting family of curves 
0h.l(Y, B) is superimposed with dash lines on Figure 3. On this 
composite graph, we seek the board position Ym+, that guar- 
antees the lowest board temperatures when B is specified by 
design. The best board position Ym~. depends on B, i.e., on the 
degree to which the board substrate is a good thermal con- 
ductor: 

(i) When B is of the order of 1 or larger, the Oh, 1 and 0h. 2 
curves are bell shaped and fall on top of each other. The lowest 
temperatures are registered at Ym+. = 0 and Ym~. = 1, i.e., when 
the board is positioned close to one of the insulated walls of 
the channel. The worst position (called Ym~) is in the middle 
of the channel, Ym~ = ½, where the highest temperature rise 
(0h.~, or 0h.2) is about four times greater than when the board 
is mounted close to one of the insulated walls. These conclu- 
sions agree all the way with what we learned in section 2 based 
on the isothermal board model (i.e., B -* or). 

(ii) When the board is a poor thermal conductor, such that 
B is smaller than the order of 1, then Oh ~ and 0h 2 curves 
intersect forming a cusp right at y = ½. 'That intersection 
corresponds to the lowest (0h.~ ---- 0ha) values, indicating that 

15 i 

O h,I.. -" ~ ~ \ Oh. 2 

B=0.1 \ \  / B=0.1 - 

%,% 

0.5 1 

Y 
Figure 3 The trai l ing edge surface temperatures o f  a board w i th  
finite transversal thermal conduc tance B 
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Figure 4 The best posi t ion (Ymin) and the wors t  posi t ion (Ymex) of 
a heat-generating board with finite transversal thermal conduc tance 

the best position for the board is along the midplane of the 
D x L channel. The worst position, Ymz, approaches 0.8 and 
0.2 as B decreases. 

These conclusions are summarized in Figure 4. The transi- 
tion from conducting boards (i) to poorly conducting boards 
(ii) occurs when B drops below 0.166. This critical B is illus- 
trated also in Figure 3. 

It is fascinating that the best location for poorly conducting 
boards, Ymtn = 1 ,  happens to be exactly the same as the worst 
location for highly conducting boards. This observation 
stresses the crucial importance of the dimensionless number B. 
This number must be calculated early, in order to determine the 
problem type, (i) or (ii). 

The lowest trailing-edge temperature ceiling that corre- 
sponds to the best location Ymin is presented as 0si. versus B 
in Figure 5; in other words, 0 a  = min [-max (0h.t, 0h,z)]. The 
same figure shows the uppermost trailing-edge temperature 
that corresponds to the worst position Ym,, namely, 
0ma x : max [-max (0h,  l ,  0h ,2)  1. The lowest temperature ceiling 
(0m~.) is considerably smaller than the highest temperature 
ceiling (0mu), regardless of the B value. This shows the 
importance of knowing not only the best design (Ym~,) but also 
the worst design (Ymax) (see Bell 1992). 

4. T h e  o p t i m a l  spacing of  a channel  w i t h  an 
iso thermal  heated  p la te  a t t a c h e d  to  one o f  
its wa l ls  

We now turn our attention to Figure 6, which reflects the 
conclusion drawn in the case of highly conducting boards in 
section 2. The heated plate is situated on or near one of the 
insulated walls of the channel. The design of a "package," or 
a stack of such cassettes, leads to the problem of determining 
the optimal channel spacing D for maximum conductance 
q/(Tw - To), or minimum plate excess temperature (T, - To). 

In this first treatment of the channel spacing problem, we 
continue to assume that the heated plate is isothermal at T, 
(which is to be minimized), that the flow through the D wide 
channel is laminar and fully developed, and that all surfaces 
are smooth. We abandon assumption (c) of section 2, and 
recognize the more general relation 

q = mc, T.- To)[1- exp ( -  hA'j1 (2,) 
\ mcp/j 
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Figure 5 The lowest temperature ceiling (0rain) and the uppermost 
temperature ceiling (0m~a) that correspond, respectively, to the best 
location (Ymi,) and the worst location (Yrnax) 

where 

p W D  a A P  
th = (22) 

12p L 

The heat transfer coefficient is h = Nu k/Dh, with Dh = 2D, and 
the Nussclt number Nu = 4.86 for fully developed flow and 
heat transfer in a channel with one side isothermal and the 
other side insulated (Kays and Crawford 1980). This h estimate, 
the heat transfer area A ,  = L W ,  and Equation 22 can be used 
to rewrite the number of heat transfer units as 

NTU hAw = 6Nu (23) 
= rhcp D AP" L 2 

On the right-hand side we see the emergence of an important 
group: the dimensionless imposed pressure difference, 

AP. L 2 
H = (24) 

The importance of nondimensionalizing AP in this way was 
noted earlier by Knight et al. (1991), who used AP.L2/I~V 

instead of AP, L2/Ijc<. Finally, Equation 21 becomes 

q __12 = 6311 - exp(-29.166-4)] (25) 
T w - T O WkI-P/" 

where 6 is the dimensionless channel spacing 

D 
6 = - I'I I/4 (26) 

L 

The maximization of the right-hand side of Equation 25 with 
respect to 6 reduces to solving the equation exp(~) = 1 + 4fl/3, 
with fl=29.166 -4. The solution to this transcendental 

~/// - - -  C i r c u i t  b o a r d  

T .  , u n i f o r m  ~ - -  i n s u l a t e d  

t / J 

A P  

zo I x  - I 7 - -  [ 
s u b s t r a t e  ~ i n s u l a t e d  

t L I 

Figure 6 Channel with isothermal heated plate attached to one of 
its walls 

equation is fl = 0.5502, which means that ~ o p t  = 2.70, or that 

Dopt=2.70 ( ju~ ~1/, (27) 
L \AP.  L 2] 

By substituting Equation 27 into Equation 25, we obtain the 
maximum thermal conductance, 

( T ~ _  T~)m, = 0 . 6 9 3 W k ( ~ L 2 )  1/'* (28) 

or, if we write f/" = q / W L  for the average heat flux, 

, "  ) L 0 . 6 9 3 ( A P . L 2 ~ l / 4  (29) 
r-T2 - = , .  , ,  

In conclusion, when the pressure difference AP is held fixed, 
the optimal spacing varies as L 1/2, and the maximum 
conductance varies as L-1/2 

5. T h e  o p t i m a l  s p a c i n g  o f  a c h a n n e l  w i t h  
u n i f o r m - f l u x  b o a r d  

In this section we reconsider the problem defined in the 
preceding section, by modeling the circuit board as a plate with 
uniform heat flux, q". Such a plate reaches its highest 
temperature (TO at the trailing edge, i.e., in the plane of the 
outlet (Figure 7). This model is more appropriate for boards 
that are relatively poor thermal conductors (small B, section 
3), which are the coldest when placed in the middle of the 
channel of Figure 1. This means that in Figure 7, the D channel 
would correspond to D/2 in Figure 1, or that the bottom 
insulated side of Figure 7 represents the plane of symmetry of 
the board mounted in the middle of the channel of Figure 1. 

The objective is to find the optimal spacing D that minimizes 
Th, or maximizes the overall thermal conductance expressed as 
the ratio q"L/ (T  h - To). We continue to assume that the flow 
and heat transfer are laminar and fully developed, and that the 
surfaces are smooth. The relation between the highest wall 
temperature (Th) and the outlet temperature of the stream (TO,t) 
is 

q"2D 
T h -  Tout = -  (30) 

kNu 

where Nu = 5.385 for a channel with one uniform-flux surface, 
and the other surface insulated (Kays and Crawford 1980). The 
stream outlet temperature can be calculated by invoking the 
first law of thermodynamics for the entire stream, 

q"L 
Tout- To = -  (31) 

pep UD 

where U is the mean velocity associated with AP and D, 

AP'  D 2 
U = - -  (32) 

12/zL 
# 

Next, we eliminate Tent between Equations 30 and 31, and 

C o o l a n t ,  

% 

Figure 7 
w a l l s  

_t_ 
D 

T 
! L . . . . . . . . . . . .  1 

Channel with uniform-flux plate attached to one of its 
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arrange the overall thermal resistance in the following 
nondimensional way: 

Th-- T O 1 2 ( L ~ 3 +  2 O_ (33) 

q"L/k = H-  \ D /  Nu L 

This quantity (or Th) can be minimized analytically with respect 
to the spacing D, and the result is 

Dop t // /~CX '~1/4 
= 3 . 1 4 ~ A ~ .  L2) (34) 

L 

The corresponding maximum thermal conductance is obtained 
by combining Equations 33 and 34: 

The similarities between the uniform-flux results (Equations 
34 and 35) and the corresponding uniform-temperature results 
(Equations 27 and 29) are evident. The optimal spacing of the 
channel with a uniform-flux circuit board (Equation 34) is only 
16 percent greater than the optimal spacing calculated based 
on the isothermal plate model (Equation 27). This comparison 
holds true when the ceiling temperature of the board is the 
same in both models, T h = Tw. 

Equations 29 and 35 show that the maximum thermal 
conductance of the isothermal board exceeds by only 8 percent 
the maximum thermal conductance of the board with uniform 
heat flux. Responsible for this difference is the leading section 
of the isothermal board, which is considerably warmer (higher 
above To) than the leading section of the uniform-flux board. 

In conclusion, the choice of a thermal boundary condition 
for the exposed surface of the heated plate has little effect on 
the design estimates for optimal channel spacing and maximum 
thermal conductance. 

6. S h o u l d  t h e  s ing le  b o a r d  be  r e p l a c e d  w i t h  
t w o  or  m o r e  e q u i d i s t a n t  b o a r d s ?  

Consider now a somewhat different question regarding the 
optimal cooling of a heat-generating board inside a channel. 
As shown in Figure 8, the channel has the spacing D and length 
L, while the board thickness is negligible. The amount of 
electronics, or the total rate of heat transfer released through 
both sides of the board, q, is fixed. Each side is a smooth 
uniform-flux surface. The objective continues to be minimiza- 
tion of the board's highest temperature. 

The new question is this: Should we optimize the positron 
occupied by the single board in the channel, as done in sections 
2 and 3, or should we distribute the given electronics (q) equally 
on two parallel boards? Or, is it better to use three parallel 
boards, while q/3 is being generated by each board? 

If the original board is replaced with n equally loaded boards, 

i n s u l a t e d  

- T  

Coolant, ~ b o a r d  ~ "-Th 1 
AP 
TO ~1. [ ~  IDa [ ~  Tout D 

1 
I -. ins°,at.. I 

Figure 8 Stack of n equidistant boards, replacing the single board 
in the parallel-plate channel of Figure 1 
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then each board releases q/n into the surrounding fluid. If the 
boards are spaced equidistantly, the spacing of ~ c h  subchannel 
is 

D 
D, = - -  (36) 

n + l  

The heat transkr rate received by the stream that flows through 
one subchannel is q/n. For the sake of simplicity, we assume 
that the extreme (first and last) subchannels are identical to the 
internal ones. This approximation becomes better as n 
increases. It is a conservative approximation, because the true 
heat transfer rate to an extreme subchannel is (q/n)/2, i.e., only 
half of the heat transfer rate to one of the internal subchannels. 
This means that the highest temperature occurs on the internal 
boards. That temperature, Th, is located in the plane of the 
outlet, where the bulk temperature of the subchannel stream is 
Tout • 

Assuming that the subchannel flow is laminar and fully 
developed, the Nusselt number for the parallel-plate channel 
with uniform flux on both surfaces (Kays and Crawford 1980) 
is Nu = 8.235, where Nu is based on the hydraulic diameter, 
Nu = h2Dffk, and, in the plane of the outlet, h = q:/(T~ - To=t). 
The uniform heat flux on each subehannel is q: = (q/n)/(2LBO. 
In conclusion, the relation between the highest temperature and 
the outlet temperature is 

q D 
T h -  To= = - -  - -  (37) 

kNuLW n(n + 1) 

The relation between the stream outlet temperature and the 
inlet temperature To follows from the first law of thermo- 
dynamics for one subchannel: 

n + l  q 
To=-  To = - -  (38) 

n pcpUDW 

The average velocity through the subchannel, U, is obtained 
quite easily by rewriting Equation 22, i.e., with Dn in place of 
D, and rh, = pUD, W in place of rh. Finally, Equations 37 and 
38 can be added side by side to construct the following 
expression for the temperature ceiling (highest excess 
temperature) as a function of the number of boards: 

T h -  T°.H1/, = 1 (DI-I1/ ,)  
q/Wk n(n + 1)Nu 

)' + 12 (n + 1) 3 1_i~/4 (39) 
n 

The overall pressure drop number II  was defined in Equation 
24. The group (D/L)II x/4, which appears on the right-hand side 
of Equation 39, is the important "external" parameter of the 
overall space (L x D x B0 in which the division of the original 
board is being contemplated. 

Figure 9 shows that the number of boards n that minimizes 
the highest temperature depends on the value of the external 
parameter (D/L)II t/4. The best n increases as the abscissa 
parameter (D/L)I'I 1/4 increases. If the group (D/L)II 1/4 is greater 
than the order of 10, the recommended number of boards is 
large so that (n + 1) ~- n. In this limit, the right-hand side of 
Equation 39 can be minimized analytically with respect to n 
to obtain the number of boards for minimum (Th -- To) at fixed 
H and (DIL)IP/4, 

1 D 
~ - rl "4 (40) n°pt -~" 3.15 L 

Substituted into Equation 39, the number of boards nnp t leads 
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n = l  2 3 

!!::!!!! ' 

?ii:iiii 7ZIIII 

i i  i i i i '  1 ======================== . . . .  ~ ' ~  1 . . . . . . . . . . . . . . . . . . . .  ! ! ! ! ~  ~ ~  -..~ 

............ i - . - 4 - - 4 . 4 . .  

/ i i ! ~ ] l ~ i i i l  
-~--tr-ttr ,  = i  i i i, i i i ' ~ ; ~ .  

O. 1 ........... i-....t-4...t.t 
:::::::::::::::::::::::::::::: .$ $ t :::::::::::x ~.z.7: 

I - - t  " - t - " t t l - ~ ~ - 4 ~  
............. i - " i " $ - " } " ' l  ' . . . . . .  "" 

L . .  
i [ J ! i ! ! i !  i i i i l  . . . .  

0.01 

I 10 100 1000 

Pn'/, 
L 

Figure 9 The effect of the number of boards on the highest 
temperature at the board trailing edge 

to the corresponding minimum temperature ceiling: 

( Th T°~ = 2.41 1-1-1/2 (41) _L 1 

q / W k  ,]mi. D 

Rounded off to the closest integer, the nopt value calculated 
based on Equation 40 reproduces quite well the n value that 
would be needed in order to place the design on the envelope 
of the family of n = constant curves plotted in Figure 9. Recall 
that (D/L)II t/4 is given. Note further that if we set nop t = I in 
Equation 40, we reproduce fairly well Equations 27 and 34, 
which should have been expected. 

The lowest temperature ceiling that is associated with 
operating on the envelope (Equation 41), [(Ta - To)/(q/Wk)]mi,, 
decreases as 1/n as n increases. The returns from installing an 
additional board diminish significantly as n becomes greater 
than the order of 10. 

It is important to keep in mind that the present assumption 
that the flow channels are identical is a major simplification 
that may not correspond to actual applications. It is well 
known that the flow through multiple channels tends to be 
distributed nonuniformly (Rohsenow et al. 1985; Shah and 
London 1978), due to the different distributions of electronics 
on the various channel surfaces. A useful extension of the 
analysis presented in this section would be to consider multiple 
channels that are not identical, and to employ the method 
developed by Shah and London (1978). 

7. Conc lus ions  

In this paper, we have addressed the fundamental thermal 
design question of how to position a heat-generating board 

that is inserted in a parallel-plate channel. The main 
conclusions of this work are as follows. 

(1) When the board is a good enough thermal conductor such 
that the B parameter defined in Equation 17 is greater than 
0.166, optimal cooling occurs when the board is positioned 
near one of the walls of the channel. In this range of B 
values, the worst board position is in the middle of the 
parallel-plate channel (Figure 4). 

(2) When the board is a relatively poor thermal conductor in 
the transversal direction, B < 0.166, the board position for 
maximum cooling (minimum temperature) is in the middle 
of the channel. The worst position is near one of the walls 
of the channel (Figure 4). 

(3) The optimal spacing between a heat-generating surface with 
uniform temperature and the insulated wall that completes 
a parallel-plate channel is given by Equation 27. The 
corresponding maximum thermal conductance is reported 
in Equation 29. 

(4) The optimal spacing between a heat-generating surface with 
uniform heat flux and the insulated wall of the parallel-plate 
channel is given by Equation 34. The minimum thermal 
conductance is given by Equation 35. 

(5) Figure 9 and Equations 40 and 41 answer the question of 
whether a heat-generating board should be divided into two 
or more equidistant boards inside the same channel with 
fixed spacing D. The overall rate of heat generation of the 
n boards is fixed, q. The optimal number of boards scales 
as (D/L)FI 1/4, while the minimum temperature scales as 
(L/D)H -;/z. 

A c k n o w l e d g m e n t  

This work was sponsored by the IBM Corporation, Research 
Triangle Park, North Carolina. 

References 

Bejan, A. 1984. Convection Heat Transfer. Wiley, New York 
Bell, K. J. 1992. Some observations on the teaching and practice of 

pessimization. Heat Transfer Eng., 13, 5-6 
Incropera, F. P. 1988. Convection heat transfer in electronic equipment 

cooling. J. Heat Transfer, 110, 1097-1111 
Incropera, F. P. and DeWitt, D. P. 1990. Fundamentals of  Heat and 

Mass Transfer, 3rd ed. Wiley, New York, chapter 8 
Kays, W. M. and Crawford, M. E. 1980. Convective Heat and Mass 

Transfer, 2nd ed. McGraw-Hill, New York, 103 
Knight, R. W., Goodling, J. S., and Hall, D. J. 1991. Optimal thermal 

design of forced convection heat sinks--analytical. J. Electron. 
Packaffino, 113, 313-321 

Peterson, G. P. and Ortega, A. 1990. Thermal control of electronic 
equipment and devices. Adv. Heat Transfer, 20, 181-314 

Rohsenow, W. M., Hartnett, J. P., and Ganic, E. N. 1985. Handbook 
of Heat Transfer Applications. McGraw-Hill, New York, 275-279 

Shah, R. K. and London, A. L. 1978. Lain/nat Flow Forced Convection 
in Ducts. Academic Press, New York, 405410 

176 Int. J. Heat and Fluid Flow, Vol. 14, No. 2, June 1993 


